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703.CELLULAR IMMUNOTHERAPIES: BASIC AND TRANSLATIONAL

Harnessing TCR/CAR Antagonism to Enhance Immunotherapeutic Precision
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Chimeric Antigen Receptor (CAR) T cell immunotherapy represents a conceptual breakthrough in the treatment of hemato-
logical malignancies. However, the rarity of cell surface protein targets specific to cancerous but not vital tissue has hindered its
broad application to solid tumor treatment. While new logic-gated CAR designs have shown reduced toxicity against healthy
tissues, the generalizability of such approaches across tumors remains unclear. Here, we harness a universal characteristic of
endogenous T cell receptors (TCRs), their ability to discriminate between self and non-self ligands through inhibition of re-
sponse against self (weak) antigens, to develop a broadly applicable method of enhancing immunotherapeutic precision. We
hypothesized that this discriminatory mechanism, known as antagonism, would apply across receptors, allowing for a transfer
of specificityfrom TCRs onto CARs. We therefore systematically mapped out the responses of CAR T cells to joint TCR and
CAR stimulations. We transduced ovalbumin-specific TCR T cells with mouse CD19 CAR to produce T cells expressing both
TCR and CAR and evaluated the response of TCR/CAR T cells using in vivo and in vitro leukemia models ( Figure 1A). We
discovered that strong TCR antigen enhanced CAR T killing of CD19 * leukemia, while weak TCR antigen antagonized CAR
T responses as assessed in vivo cytotoxicity and in vitro multiplexed dynamic profiling ( Figure 1B). We developed a math-
ematical model based on cross-receptor inhibitory coupling that accurately predicted the extent of TCR/CAR antagonism
across a wide range of immunological settings. This model was validated in a CD19 * B16 mouse melanoma model showing
that TCR/CAR antagonism decreased the infiltration of a tumor-reactive T cell cluster (cluster 1), while TCR/CAR agonism en-
hanced infiltration of this cluster1 ( Figure 1C). We then applied our quantitative knowledge of TCR/CAR crosstalk to design
an Antagonism-Enforced Braking System (AEBS) for CAR T cell therapy. This was assessed in a model system using a CAR
targeting the tyrosine-protein kinase erbB-2 (HER2), expressed on a subset of patients with both B-ALL and AML together
with a hedgehog acyltransferase (HHAT) specific TCR, which responds strongly to mutated peptides presented on tumor cells
and weakly to wild-type peptides presented on healthy tissue. Consistent with our discovery of the TCR/CAR antagonism,
TCR signals against healthy cells expressing wild-type HHAT peptide antigen antagonized HER2 CAR T cell responses, min-
imizing on-target/off-tumor cytotoxicity against healthy cells. Notably though, AEBS-CAR T cells exhibited high anti-tumor
cytotoxicity against tumor cells expressing HER2 and mutated HHAT peptides ( Figure 1D). AEBS CAR T cells sharpen the
discriminatory power of synthetic anti-tumor lymphocytes, laying the groundwork for future studies to engineer complex logic
into cells with minimal numbers of receptors ( Figure 1E). Our work highlights a novel mechanism by which TCRs can enforce
CART cell specificity, with practical implications for the rational design of future anti-leukemia immunotherapies.
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Figure 1. TCR signals of different strengths can antagonize or enhance CAR activity. (A) Experimental scheme to evaluate TCR/ICAR
crosstalk. Naive OT-1 T cells were transduced with a murine CD19 CAR and then stimulated with CD19+ E2aPBX leukemia cells expressing either
no additional antigen or one of several ovalbumin peptide variants with differing antigenicities. (B) Survival curves for mice bearing E2aPBX/OVA
leukemia cells treated with OT-1/CAR T cells (n = 10 mice per group) (**p < 0.01, ****p < 0.0001). A representative example of IMMUNOtron-
acquired cytokine dynamics quantifying the divergent effects of TCR on CAR activation, as a function of the TCR antigen strength (n = 3 biological
replicates). TCR/ICAR crosstalk for dual OT-1/CAR T cells stimulated with CD19K¢ {top) or CD19WT ibottom) E2aPBX leukemia cells. Y-axis
represents the fold change (FC) of responses for a combination of CAR and TCR ligands compared to CAR ligand alone; an FC above 1 indicates
that the strength of TCR signal enhances the overall response of the CAR, while an FC below 1 indicates antagonism of the CAR response. The
degree of antagonism was evaluated by examining fold changes in the production of the cytokines IL-2, TNF and IFN-y (n = 6 biclogical
replicates). (C) Experimental scheme to evaluate TCR/CAR crosstalk in OT-1/CAR T cells in response to dual antigen B16-CD19/0VA melanoma
cells. UMAP plot of 3,514,537 tumor-infiltrating leukocytes colored by cluster membership (16 clusters, far left). Tumor weights at Day 8 across all
samples (left) anti-correlated with the frequency of Leukocyte Cluster 1 (right) and its phenotype (far right) revealed a tumor-reactive population of
CD8* T cells (n = 10-15 mice per group). (D) Cell growth curves (top) and average growth over time (bottom) for GFP-tagged target cells,
monitored as green calibrated units (GCU), show lower cytotoxicity of AEBS-CAR T cells against healthy tissue compared to conventional CAR T
cells (upward arrow) and increased cytotoxicity against tumors compared to TCR T cells (downward arrow, n = 5 biological replicates). (E) General
design for AEBS-CAR T cells resulting in enhanced targeting of tumors and reduced toxicity against healthy tissues.

https://doi.org/10.1182/blood-2023-182447

ABSTRACTS

Figure 1

€ blood® 2 NOVEMBER 2023 | VOLUME 142, NUMBER Supplement 1

99

¥20Z AN 61 uo 3senb Aq ypd-urew-zo.-pooia/yz6+81z/86/l uswelddng/z L 4pd-ejoie/poojgaeu suonealiqndyse//:diy woly papeojumoq


https://doi.org/10.1182/blood-2023-182447

